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Abstract. In this paper, a symplectic integration algorithm using solvable maps is investigated.
Examples are studied in two and four dimensions. The method is shown to give good results.

1. Introduction

Suppose we are interested in the long-term stability of particles being transported through a non-
integrable Hamiltonian system. As the system is assumed to be non-integrable, the stability of
the system is usually studied using numerical integration. Conventional numerical integration
techniques, however, do not preserve the symplectic nature of Hamiltonian systems [1] and can
therefore give wrong results. Integration algorithms which explicitly preserve the symplectic
nature are called symplectic integration methods [1].

Several symplectic integration methods have been discussed in the literature [1-17]. In
this paper, we describe an alternate symplectic integration method using solvable maps. This
differs from the earlier symplectic integration methods proposed by one of the authors [14,17]
as follows. There, symplectic integration was achieved using Cremona maps, for which the
Taylor series expansion terminates after two terms when acting on phase space variables. Inthe
present method, symplectic integration is achieved using solvable maps for which the Taylor
series expansion can be summed up explicitly. This method was briefly dealt with earlier [18].
In this paper, we explore the method in detail.

2. Preliminaries

Letz = (g1,92, ..., qn, P1, D2, --., Pn) denote the 2-dimensional phase space variables.
The Lie operator corresponding to a phase space fungtionis denoted by if (z) :. It acts
on the space of phase space functions and its action is as shown below [19]:

f@ g =), g@] 1)

Here g(z) denotes another phase space function gfd)] g(z)] denotes the usual Poisson
bracket of the functiong (z) andg(z). Further, the commutator of two Lie operators, here
denoted by, } satisfy the relation [19]

Lfnigd=1f¢l:. )
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The exponential of a Lie operator is called a Lie transformation and is given as

exp: f(2) :)=Z:f(2): )

n=0
The powers of :f (z) : are defined recursively by the relation

@M g = f@) "), 8()]

®3)

n!

with
L f (@) 0 g(2) = g(2).

Also, the product of two Lie transformations is also a Lie transformation and can be combined
using the Campbell-Baker—Hausdorff theorem [20]. In the present context it takes the form

expi: foexp:g:)=exp:h:) 4)
with & given by the expression
h=f+g+QUf g1+ UL 8ll+ (g [g [N+ (5)

The time evolution of a Hamiltonian system can be represented by a symplectic map
M [19]. Symplectic maps are maps whose Jacobian matt{z) satisfy the symplectic
condition:

M@)JIM@) =J (6)
whereM is the transpose dif andJ is the fundamental symplectic matrix defined as follows:
0 I
J= (_1 O) @)

wherel is an x n identity matrix. MatricesV that satisfy (6) are called symplectic matrices
and the corresponding mapd symplectic maps.

Denoting the initial and final locations of the particle byand z/ respectively, the
evolution of a Hamiltonian system can be described as [19]:

= M7 ®)
Using the Dragt—Finn factorization theorem [19], the symplectic mivapan be factorized as
M = Mefiel | gft . 9)

Here : f,, : is the Lie operator corresponding to the homogeneous polynofpiéin z) of
degree m. Thef,, are uniquely determined by the factorization theorethdenotes the Lie
transformation corresponding to the Jacobian maltfigf the symplectic map1.

As M involves an infinite number of Lie transformations, for any practical computations,
we have to truncaté after a finite number of Lie transformations:

M= Melsels el (10)

Each one of the Lie transformations in equation (9) can be shown to be a symplectic map and
hence the map can be truncated at any order without losing symplecticity. However, while
implementing the above as a numerical algorithm, we need to know the explicit action of each
one of these exponential factors on the phase space coordinates. Since we cannot evaluate the
infinite number of terms present in each Lie transformation, we need to evaluate the action
of these transformations using some other method. The most straightforward method is to
truncate the Taylor series expansion of each Lie transformation (cf equation (3)) after a finite
number of terms. This, however, violates the symplectic condition. Although, this method
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is justifiable in short-term tracking, it does not work well in long-term tracking as the non-
symplecticity can lead to spurious damping or even chaotic behaviour which is not present in
the original system [17]. Such behaviour can obviously lead to wrong predictions regarding
the long-term stability of the Hamiltonian system being studied. Therefore, we refactdrize

in terms of simpler symplectic maps that can be evaluated both exactly and quickly. In this
paper, this refactorization is achieved though the so-called ‘solvable maps’ [18].

3. Solvable map method

Solvable maps are generalizations of Cremona maps. The class of Cremona maps includes
only those symplectic maps for which the Taylor series expansion terminates when acting on
phase space coordinates. The class of solvable maps also includes those symplectic maps for
which the Taylor series expansion can be summed up explicitly. One simple example of such
amap is exfi ag;*?+bqi* p1 :). Its action on phase space variables can be given explicitly

as follows (forl > 1):

q1
gy = exp: agy +bgi ™ p1 gy = 1 (11)
(1+1bg})T
, E —a(g)'™
Py = X agy? + b} py 1 = —— i — (12)
b(qy)
where
E = ag;"™ +bgi"™ p1. (13)

The basic idea behind the solvable map method is to represent each nonlinear factor
exp(: fn, 1) in (10) as a product of solvable maps. That is,

exp; fm ) = exp(: g1) exp(: g2)...exp(; ) for m>3. (14)

Since each solvable map can be evaluated explicitly, the symplectic condition is not violated
if we refactorizeM in terms of solvable maps.

3.1. One degree of freedom

For simplicity, we restrict ourselves to a general sixth-order symplectic map in one dimension
Me=Mexp: f3:)...exp(: fo2) (15)

where [19]

fa=a1q3 +azq? p; +azqy pi +asp}
fa=asqi +agqs p, +--- +agp]

fs= alOQf ‘*ﬁlllqi1 pyt---tauq, Pf +0115Pf
fo = aweqs +a17q3 py + -+ + a1 qy py + azps.

(16)

It should be noted that there is an explicit algorithm [19] for determitihand the coefficients
aj througha,, from the Hamiltonian system that we want to study.
We now refactorize the above symplectic map in terms of solvable maps:

Me=Mexp(:gr:)...exp(: g127) (17)
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where
81=b1q3 +b2q? p; 82 = baqy p2 +bap;
g3 = bsq; + b g3 py
g4 = brq? p? gs = bgqy p3 +bopy
g6 = biog? + b11q7 py \ (18)

g7 = b12q3 p? +b1gq; pi g8 = b13qZ p3 + baog? pi
89 = b1aq, pi + bisp?
810 = bigq? + b17¢3 py g11=b19q3 p3
812 = ba1qy p3 + baopS.
Here the unknown coefficients throughb,, occurring in the above equation are determined

by comparing the original form afMg with its refactorized form using CBH theorem (cf
equation (4)) and ensuring that the terms match (up to order 6):

exp: fz:)...exp(: fe6:) =exp(:ig1:)...exp; g12:) up to order 6 (19)

This is easily accomplished and the expressions for the coefficients are given in appendix B.
These coefficients parametrize the system under study and reduce to real numbers once the
system is fixed.

We now consider two applications of the above method. The first example is to find the
region of stability of the following simple symplectic map:

M = Mexpl: (g1 + p1)* ] (20)
where
cosf  sinf
M= (— siné cos@) (1)
andf = 3.

We chose this example since the exact action of the above map is known and hence the
exact region of stability can also be determined. The action of &yp[+ p1)® :] on phase
space variables can be given as follows:

g1 =q1—3(q1 + p1)?
/ 2 (22)

p1=p1+3(g1+p1)°.
The numerical results obtained using the fourth-order solvable map method and the exact results
are shown in figure 1. This figure gives the phase space portraits for two initial conditions. We
observe that there is excellent agreement between results obtained using solvable maps and
the exact results. Further, the region of stability obtained using solvable maps agrees well with
the exact region of stability. On the other hand, if we use the generating function method of
symplectic integration as applied to maps [21], the region of stability is greatly overestimated.
In this method, the map is stable even for the initial conditihO, 0.0) (see figure 2) whereas
the exact map becomes unstabletd7, 0.0).

Next, we consider an application of the solvable map method to the nonlinear pendulum
Hamiltonian. It has been shown [17] that nonsymplectic integration methods gives rise to
spurious chaotic behaviour where there is none, even for this simple system. Such problems
become accentuated when long-term integration is performed to study stability of more
complicated Hamiltonian systems.

The nonlinear pendulum is described by the following Hamiltorfian

2

H(g1, p1) = % —cosqy +1 (23)
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Figure 1. This figure shows the phase space plots for two initial conditions. The exact results are
shown as a line and the solvable map results as crosses.
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Figure 2. Thisfigure shows the phase space plot for initial condi¢idh0, 0.0) using the generating
function method applied to maps.

To use the solvable map method we first need to represent this Hamiltonian in terms of a
symplectic mapM. To order 6, this is given by [17]:

M = Melel (24)
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Figure 3. This figure shows the phase space plots for three initial conditions for the pendulum
map. The exact results are shown as a line and the solvable map results as dots.

where (for unit time)

0.5403 08415
M= (—0.8415 054o3> (25)
and
fa=2411x 102} — 3.812x 102¢3py + 3.716 x 10 243 p?
—2.089x 10 2¢; p3 +5.168 x 10~ 3pf (26)

fo=1.200x 10%¢% — 1.026 x 10 3¢ py + 1.390 x 10 3¢; p? — 6.657 x 10 4¢3 p3
—8.008x 10752 p} + 1.748 x 10 %1 p3 — 4.963x 107°pS.

The polynomialsf; and 5 are zero. We factorize the above map in terms of solvable maps as
given in equation (16). The results obtained by numerically integrating the map equation (24)
using the solvable map method are shown in figure 3. A variety of initial conditions have been
used and the results obtained agree very well with the exact results. In this case, the generating
function method also gives excellent results.

3.2. Two degrees of freedom

In the two degrees of freedom case, a general Hamiltonian can be written in the form

H(z) = Hz(z) + H3(z) + Ha(2) + - -- (27)
whereH,, (z) contains all terms of the forgy' pi g5 p4 with a+b+c+d = m. The total number
of such terms irf,, (z) is > C,, [14]. That is, we need this many independent coefficients to
parametrizefl,, (z). Therefore, to parametrize the nonlinear pistz) + Hy(z) (truncated at
the fourth order), we require 55 independent coefficients. Consequently, the nonlinear part of
the corresponding fourth-order symplectic m&fy, is also parametrized by 55 coefficients.
These coefficients reduce to fixed real numbers once the Hamiltonian is fixed.

Let us now consider the Lie representation of a general fourth-order symplectic map in

two degrees of freedom:

My = Mexp(: fz:)exp(: fa:) (28)
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where f,, is amth-order homogeneous polynomial in As seen abovefs and f; can be
parametrized by 55 coefficients. We denote thenupthroughass. The representation in
terms of solvable maps is given by

Mgy = Mexp(: g1l)...exp(igi1’) (29)
where theg are as follows:

g1=ba1gi +q3 (b1 +bsqz) + 47 (baqa + b2sq3) + q1(baq; + barg3)
+p1(b1ag5 + barg3) + q1p1(beqz + b3ag?)

g2 = ba1pt + p3(b11 + bazp2) + p2(b1ap2 + basp3) + p1(bieps + bsop3)
+q1(b10p3 + baop3) + q1p1(b7p2 + basp3)

83 = bs1qy + b17q3 + baapias + qa(b12p? + baop3) + g2pa(bispi + basp?)

g4 = bssp3 + boop3 + boqip5 + pa(bag? + b2agy) + q2p2(bequ + boeg?)

85 = qZp1(b2 + boeq2 + b27p2) (30)

86 = q1p2(bs + baogo + bazpy)

87 = q2p2(b1s + b3sqr + bagp1)

88 = q2p5(b10 + bagqp + bagp?)

80 = b22q3 p1 + bs2q3 p2

810 = b3191P3 + bsaqop3

811 = basq’ p + basq1p1q2p2 + bsags ps.

Thus an arbitrary fourth-order symplectic map can be represented using a product of 12
solvable maps (including the linear maf). The coefficient$, throughbss that occur in the
above equation are obtained by comparing the original symplectic map with the refactorized
symplectic map term by term using the Campbell-Baker—Hausdorff series (cf equation (4)).
The expressions for the coefficients obtained by this procedure are given in appendix B. These
55 coefficients parametrize the solvable map representation just as the coeféictbntaigh
ass parametrize the original symplectic map. The coefficiépteduce to real numbers once
the symplectic map is fixed. The solvable map factorization given above is not unique even
after imposing the requirement that the number of solvable maps be a minimum. A numerical
study of the various systems studied here using different possible factorizations indicates that
all of them give very similar results.

We now illustrate the method using the following map for which exact results are known:

M = Mexpl:(q1+ p1+qz+ p2)°] (31)
where
cosd  sind 0 0
—singd cosh 0 0
M= 0 0 cos¥)  sind (32)
0 0 —sinf cosd

andd = 7. Again, as in the previous examples, excellent agreement between solvable map
results and the exact results are observed.

We have also applied the method to more complicated Hamiltonian systems like particle
storage rings. We studied a static storage ring that is designed to store protons. The storage
ring is composed entirely of dipoles, quadrupoles and drifts with the exception of two pairs of
sextupoles. Itis for such complicated Hamiltonian systems that the efficacy of our method is
bestrevealed. Since there are many constituent elements (in storage rings like the Large Hadron
Collider, there can be thousands of elements), numerical integration using Hamiltonians for
each element is cumbersome and slow. On the other hand, a map-based approach where
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one represents the entire storage ring in terms of a single map is much faster [22]. When
this is combined with our solvable map refactorization, one obtains a symplectic integration
algorithm which is both fast and accurate. In the solvable map method, whether the system
being studied is the simple map considered above or the complicated storage ring that we will
now consider, the number of solvable maps required is at most 12 (it can be less if some of
the g; are zero). But in conventional integration methods, the running time for the algorithm
increases with the increase in the number of constituent units of the system. Therefore, for
such complex real-life systems, the solvable map method is much faster.
We studied a static storage ring represented by the following symplectic map:

My = Mexpi f32)expi: fa:) (33)
where [21]
0.371731 486128 00 0.0
- —0.307966 —1.33728 00 0.0
M= 0.0 0.0 0.548139 260973 (34)
0.0 0.0 —0.110952 129610
and

f3 = —0.51714%3 — 4.87906;2p; — 14.3568;1 p? — 0.57480%143
+2.15359192p2 — 0.233856G;1 p3 — 10.0954p3 — 4.8677(Q1932
+25.1785p1¢2p2 — 24.9554p, p3 (35)
fa=—1122627 — 1850813 p; — 1165752 p? + 0.365400,7¢2
+2.9849Y2¢,p, — 33.8546;7 p3 — 3056221 p3 — 1.430291 p1g>
+32.788671 p1g2p2 — 23241871 p1p5 — 337.958p7 — 10.91815 p?
+31.34547, p3 p, — 320.703p? p5 — 0.710814;5 + 1360883 p2
—87.030975 p3 + 229570y, p3 — 247.209p5. (36)
The factorization of the above map in terms of the 11 solvable maps given in equation (30)
is as follows:
g1 = —4.9074;} — 0.517143 + 0.201Q72¢2 — 0.5748142
—4.8677p1g? + 39.02371 p14?
g2 = —1205502»7 — 10.0954p3 — 76990282 p2 — 24.9554p; p3
—0.233%1 p5 — 17364851 p1p5
g3 = —0.7108;5 + 137.8813p2¢2 + g2 p2(25.1785p; — 4249587p?)
g4 = —247.2091p5 — 54.286%% p2 + 27.50112 p2q?
gs = —4.8791% p;
g6 = —14.35687; p?
g9 = —40.781%3p; + 1560373 p,
g10 = —157.85367, p3 + 2056419, p3
g11 = —2451402;% p? — 90.10671 p1g2p2 — 66.521%3 p3.
The polynomials; andgg are zero. The,—p; phase plots for the system using our solvable
map method are given in figure 4. From theoretical considerations, we would expect the phase
space curves to approach a triangular shape due to the one-third resonance caused by the

presence of sextupoles. Our numerical results using solvable maps (figure 4) agrees with the
theoretical analysis.
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Figure 4. This figure shows the phase space plot for a storage ring using the solvable map method.

3.3. Error analysis

In our method, we first truncate the symplectic map to a given order and then refactorize it
using a product of solvable maps. Both these stages give rise to errors. When we truncate the
symplectic map\ at thenth order, we obtain

M, = Mexp(: f3expt: fa)...expt: fu ). (37)
The leading term that has been omitted isexf)+1 ;). From properties of Lie transformations
and Lie operators [19], we have

expi: fan Dz=z+[fu+1z]+--- (38)

where [ ] denotes the usual Poisson bracket. Nofy,f 1, z] gives terms of the form” [19].
Thus, error due to truncation of the symplectic map is of order
Next, we refactorize the truncated symplectic mialp as a product of solvable maps:

M, = Mexp(: g1)expi: g2 ) ...exp(C gk o). (39)
These solvable maps are obtained by first using the CBH series to combine the Lie
transformations and then comparing with the original symplectic map. Both these maps are
made to agree up to order Therefore, the leading error term is again of the form(ekp., :)
giving rise to an error of ordey”.

4. Conclusions

We have studied a symplectic integration algorithm using solvable maps. It was shown to
give good results in various examples. It provides a fast and accurate symplectic integration
method for complicated Hamiltonian systems. Another advantage of this method is that it can
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be easily extended to higher dimensions since the computations involved are not that difficult

when packages like Mathematica or Maple are used. The solvable map factorization for three
degrees of freedom has already been carried out and involves 20 solvable maps.
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Appendix A

The expressions fdr that occur in (18) are given as follows:

bi =a; for i=1...,5 and i=9
b5:a6—3a1a3
9a1a asa

bg =dag — 3a2a4

b1o = a0+ 3aZaz

b11 = a11 + 9aZas + 2a1a2a3

bip =app — 1&1161% + aéag + 120 a5a4
biz=aiz— 261261% + 5a§a4 — 24a1a3a4
b14 = a1a — 18a1a3 — 4azazay

2
bis = a5 — 6aay

27a3a, 9a?azaz
big = a1 — —— + 6ajazas + —

2 2 2 2
a ajasas 27atasas
b17 = a7 — Aasa; + —2-2 + 36ayasas — —2— + 12apa3a5 — IT

3 2 2
asaz  3aiasa 57a1a5a4
big = a1 — Bagas — 2asa7 — ZT + 5 2 + 18aqa4a6 — Tz

+6asazag + 36azasas + 54afa3a4
b1g = a9 — dagag — Bagas — 15a1a§ + 8]&%612 + 361561% — 5a§a4 + 24asa4a6
+18aqarasay

361261% 3(1%613(14

+ 12a0a4a7 +

171a14?
bag = azo — 2aga7 — 6agas — #

+ 54611(12(12 —
45a§af 81a1a3a§ 3a2a§a4
2 2 2
27612613613

7 .

b1 = ax1 — 4agaz +

81(11612

by = azx — — Bagaras +

Appendix B

The expressions fdr that occur in (29) are given as follows:

b, = a; for i=1...20



by =
by =
bz =
bys =
bos =
b =
b7 =
bog =
bog =
bz =
bz =
bz =
b3z =

b3y =
b3s =

b3 =
b7 =
b3g =

bzg =
bao =

by =
bar =
byz =
by =

bys =

Symplectic integration using solvable maps

——5 tax
2 2
asgdeg aszay
—3a1as — —— — —— tax
2 2
asdag
—(azaz) — asag — > +azs

3aiaz
—(azas) — —5 ~dsdw +azy

—3azas asay; Saiain  asai;  asais

- - - +azs
2 2 2 2 2
dazde aedg asa
—2azas + — Taas— —— = 3ajair — asais — +az
aray;  azdg aapags
—2asas + —— + —(— — asaip — 3a1a13 — — aszaie + azy
2 2 2
—(azag) 3asay;  azaig ta
——— —agag— —— — 28
2 2 2
axag 3aiass
asae — asay — > 2agaipo — 5 +asaig — azaig + azg
aaig 3aiaie | asais  3azaxo
asar — +agaio — > + 5 T o +aso
arai asd13
3azayy + - +az;
2 2
—(asag) agal? asais
— 3azai1 + 2axa12 — — agaiz — azais — +asz
—(asaz) agaiz . ardis
———— + 3a4a11 + ayoaiz + 2a2a13 + + — aeaie + Az
2 2 2
3aza17  aeais
—(asag) — 2aza1z + arais — agais — agais + > T 5 +asg

—(asag) + 2a4a12 — 2aza13 — 2a10a14 + arais — 2agaie + azaig — dsdig + ass

azaie  3asaxo tg
— ——— tazs
2 2

—(asaio) + 2asa13 + aipass + arais + agaie +

—3agasz
2
—(azag) . deds

2
azag | aedio
2 2
asaie + aijopaig t aso
3asaiy L 412013
2 2
—3asary
2

asaiz+

— agaig+asy

dodi1g

+asa14 — aszays + 3aypar7 + — 2agayg + azg

agdig

+ asays — azaie + 2a10018 — — 3agazo + azg

+an

+asaip — aizaia t+as

aizdis

+aioai6 + ass

—3agayy deann+ 95 3aizai7  aiais
—F—— — asa1 —auaist ——/—— —
2 2 2 2
3agaiy asais
> azaip — asaiz +

asa

— 2a14a16 + a13a1g — a12a19 + ass

141
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asaie aizate  3aipax

by = +ajsaze+ ———— tass
2 2
bar = —(agai2) — araa1g + asy
azais  aedis asaig
bsg = agair — agaiz + > T 5 + 3aea17 + — 2a14a19 + asg
azais  asdie aisaig
bag = —(ayoai2) + agaiz — 5 T3 + 2a16a18 — — 3agaazo + asg
3aysaz9

bso = aieaig — - +asg

—3ai7a18
bs) = ——— +asg;

2

agdiy asgais

bsy = - — 3ayraig + asp
2 2
b aipais | dedis  dgdis  3aigdiy  9aizano tg
53 = - - - 53
2 2 2 2 2

—(ai0a15) | agaie

bss = + + 3a1gaz0 + dsa
2 2
b 3ai9az0
55 = ——0——
2
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