
Symplectic integration using solvable maps

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2000 J. Phys. A: Math. Gen. 33 131

(http://iopscience.iop.org/0305-4470/33/1/308)

Download details:

IP Address: 171.66.16.118

The article was downloaded on 02/06/2010 at 08:01

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/33/1
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen.33 (2000) 131–142. Printed in the UK PII: S0305-4470(00)03816-6

Symplectic integration using solvable maps

Govindan Rangarajan† and Minita Sachidanand
Department of Mathematics, Indian Institute of Science, Bangalore 560 012, India

E-mail: rangaraj@math.iisc.ernet.in

Received 28 April 1999, in final form 11 October 1999

Abstract. In this paper, a symplectic integration algorithm using solvable maps is investigated.
Examples are studied in two and four dimensions. The method is shown to give good results.

1. Introduction

Suppose we are interested in the long-term stability of particles being transported through a non-
integrable Hamiltonian system. As the system is assumed to be non-integrable, the stability of
the system is usually studied using numerical integration. Conventional numerical integration
techniques, however, do not preserve the symplectic nature of Hamiltonian systems [1] and can
therefore give wrong results. Integration algorithms which explicitly preserve the symplectic
nature are called symplectic integration methods [1].

Several symplectic integration methods have been discussed in the literature [1–17]. In
this paper, we describe an alternate symplectic integration method using solvable maps. This
differs from the earlier symplectic integration methods proposed by one of the authors [14,17]
as follows. There, symplectic integration was achieved using Cremona maps, for which the
Taylor series expansion terminates after two terms when acting on phase space variables. In the
present method, symplectic integration is achieved using solvable maps for which the Taylor
series expansion can be summed up explicitly. This method was briefly dealt with earlier [18].
In this paper, we explore the method in detail.

2. Preliminaries

Let z = (q1, q2, . . . , qn, p1, p2, . . . , pn) denote the 2n-dimensional phase space variables.
The Lie operator corresponding to a phase space functionf (z) is denoted by :f (z) :. It acts
on the space of phase space functions and its action is as shown below [19]:

: f (z) : g(z) = [f (z), g(z)]. (1)

Hereg(z) denotes another phase space function and [f (z), g(z)] denotes the usual Poisson
bracket of the functionsf (z) andg(z). Further, the commutator of two Lie operators, here
denoted by{, } satisfy the relation [19]

{: f :, : g :} =: [f, g] : . (2)
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The exponential of a Lie operator is called a Lie transformation and is given as

exp(: f (z) :) =
∞∑
n=0

: f (z) :n

n!
. (3)

The powers of :f (z) : are defined recursively by the relation

: f (z) :n g(z) =: f (z) :n−1 [f (z), g(z)]

with

: f (z) :0 g(z) = g(z).
Also, the product of two Lie transformations is also a Lie transformation and can be combined
using the Campbell–Baker–Hausdorff theorem [20]. In the present context it takes the form

exp(: f :) exp(: g :) = exp(: h :) (4)

with h given by the expression

h = f + g + ( 1
2)[f, g] + ( 1

12)[f, [f, g]] + ( 1
12)[g, [g, f ]] + · · · . (5)

The time evolution of a Hamiltonian system can be represented by a symplectic map
M [19]. Symplectic maps are maps whose Jacobian matrixM(z) satisfy the symplectic
condition:

M̃(z)JM(z) = J (6)

whereM̃ is the transpose ofM andJ is the fundamental symplectic matrix defined as follows:

J =
(

0 I

−I 0

)
(7)

whereI is an× n identity matrix. MatricesM that satisfy (6) are called symplectic matrices
and the corresponding mapsM symplectic maps.

Denoting the initial and final locations of the particle byzi and zf respectively, the
evolution of a Hamiltonian system can be described as [19]:

zf =Mzi . (8)

Using the Dragt–Finn factorization theorem [19], the symplectic mapM can be factorized as

M = M̂e:f3:e:f4: . . .e:fm: . . . . (9)

Here : fm : is the Lie operator corresponding to the homogeneous polynomialfm (in z) of
degree m. Thefm are uniquely determined by the factorization theorem.M̂ denotes the Lie
transformation corresponding to the Jacobian matrixM of the symplectic mapM.

AsM involves an infinite number of Lie transformations, for any practical computations,
we have to truncateM after a finite number of Lie transformations:

M = M̂e:f3:e:f4: . . .e:fm:. (10)

Each one of the Lie transformations in equation (9) can be shown to be a symplectic map and
hence the map can be truncated at any order without losing symplecticity. However, while
implementing the above as a numerical algorithm, we need to know the explicit action of each
one of these exponential factors on the phase space coordinates. Since we cannot evaluate the
infinite number of terms present in each Lie transformation, we need to evaluate the action
of these transformations using some other method. The most straightforward method is to
truncate the Taylor series expansion of each Lie transformation (cf equation (3)) after a finite
number of terms. This, however, violates the symplectic condition. Although, this method
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is justifiable in short-term tracking, it does not work well in long-term tracking as the non-
symplecticity can lead to spurious damping or even chaotic behaviour which is not present in
the original system [17]. Such behaviour can obviously lead to wrong predictions regarding
the long-term stability of the Hamiltonian system being studied. Therefore, we refactorizeM
in terms of simpler symplectic maps that can be evaluated both exactly and quickly. In this
paper, this refactorization is achieved though the so-called ‘solvable maps’ [18].

3. Solvable map method

Solvable maps are generalizations of Cremona maps. The class of Cremona maps includes
only those symplectic maps for which the Taylor series expansion terminates when acting on
phase space coordinates. The class of solvable maps also includes those symplectic maps for
which the Taylor series expansion can be summed up explicitly. One simple example of such
a map is exp(: aql+2

1 + bql+1
1 p1 :). Its action on phase space variables can be given explicitly

as follows (forl > 1):

q ′1 = exp(: aql+2
1 + bql+1

1 p1 :)q1 = q1

(1 + lbql1)
1
l

(11)

p′1 = exp(: aql+2
1 + bql+1

1 p1 :)p1 = E − a(q ′1)l+2

b(q ′1)l+1
(12)

where

E = aql+2
1 + bql+1

1 p1. (13)

The basic idea behind the solvable map method is to represent each nonlinear factor
exp(: fm :) in (10) as a product of solvable maps. That is,

exp(: fm :) = exp(: g1) exp(: g2) . . .exp(: gn) for m > 3. (14)

Since each solvable map can be evaluated explicitly, the symplectic condition is not violated
if we refactorizeM in terms of solvable maps.

3.1. One degree of freedom

For simplicity, we restrict ourselves to a general sixth-order symplectic map in one dimension

M6 = M̂ exp(: f3 :) . . .exp(: f6 :) (15)

where [19]

f3 = a1q
3
1 + a2 q

2
1 p1 + a3 q1p

2
1 + a4p

3
1

f4 = a5q
4
1 + a6 q

3
1 p1 + · · · + a9p

4
1

f5 = a10q
5
1 + a11q

4
1 p1 + · · · + a14q1p

4
1 + a15p

5
1

f6 = a16q
6
1 + a17q

5
1 p1 + · · · + a21q1p

5
1 + a22p

6
1.

(16)

It should be noted that there is an explicit algorithm [19] for determiningM and the coefficients
a1 througha22 from the Hamiltonian system that we want to study.

We now refactorize the above symplectic map in terms of solvable maps:

M6 = M̂ exp(: g1 :) . . .exp(: g12 :) (17)
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where

g1 = b1q
3
1 + b2 q

2
1 p1 g2 = b3 q1p

2
1 + b4p

3
1

g3 = b5q
4
1 + b6 q

3
1 p1

g4 = b7 q
2
1 p

2
1 g5 = b8 q1p

3
1 + b9p

4
1

g6 = b10q
5
1 + b11q

4
1 p1

g7 = b12q
3
1 p

2
1 + b18q

4
1 p

2
1 g8 = b13q

2
1 p

3
1 + b20q

2
1 p

4
1

g9 = b14q1p
4
1 + b15p

5
1

g10 = b16q
6
1 + b17q

5
1 p1 g11 = b19q

3
1 p

3
1

g12 = b21q1p
5
1 + b22p

6
1.

(18)

Here the unknown coefficientsb1 throughb22 occurring in the above equation are determined
by comparing the original form ofM6 with its refactorized form using CBH theorem (cf
equation (4)) and ensuring that the terms match (up to order 6):

exp(: f3 :) . . .exp(: f6 :) = exp(: g1 :) . . .exp(: g12 :) up to order 6. (19)

This is easily accomplished and the expressions for the coefficients are given in appendix B.
These coefficients parametrize the system under study and reduce to real numbers once the
system is fixed.

We now consider two applications of the above method. The first example is to find the
region of stability of the following simple symplectic map:

M = M̂ exp[: (q1 + p1)
3 :] (20)

where

M =
(

cosθ sinθ
− sinθ cosθ

)
(21)

andθ = π
3 .

We chose this example since the exact action of the above map is known and hence the
exact region of stability can also be determined. The action of exp[:(q1 + p1)

3 :] on phase
space variables can be given as follows:

q ′1 = q1− 3(q1 + p1)
2

p′1 = p1 + 3(q1 + p1)
2.

(22)

The numerical results obtained using the fourth-order solvable map method and the exact results
are shown in figure 1. This figure gives the phase space portraits for two initial conditions. We
observe that there is excellent agreement between results obtained using solvable maps and
the exact results. Further, the region of stability obtained using solvable maps agrees well with
the exact region of stability. On the other hand, if we use the generating function method of
symplectic integration as applied to maps [21], the region of stability is greatly overestimated.
In this method, the map is stable even for the initial condition(10.0, 0.0) (see figure 2) whereas
the exact map becomes unstable at(0.07, 0.0).

Next, we consider an application of the solvable map method to the nonlinear pendulum
Hamiltonian. It has been shown [17] that nonsymplectic integration methods gives rise to
spurious chaotic behaviour where there is none, even for this simple system. Such problems
become accentuated when long-term integration is performed to study stability of more
complicated Hamiltonian systems.

The nonlinear pendulum is described by the following HamiltonianH :

H(q1, p1) = p2
1

2
− cosq1 + 1. (23)
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Figure 1. This figure shows the phase space plots for two initial conditions. The exact results are
shown as a line and the solvable map results as crosses.
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Figure 2. This figure shows the phase space plot for initial condition(10.0, 0.0)using the generating
function method applied to maps.

To use the solvable map method we first need to represent this Hamiltonian in terms of a
symplectic mapM. To order 6, this is given by [17]:

M = M̂e:f4:e:f6: (24)
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Figure 3. This figure shows the phase space plots for three initial conditions for the pendulum
map. The exact results are shown as a line and the solvable map results as dots.

where (for unit time)

M =
(

0.5403 0.8415
−0.8415 0.5403

)
(25)

and
f4 = 2.411× 10−2q4

1 − 3.812× 10−2q3
1p1 + 3.716× 10−2q2

1p
2
1

−2.089× 10−2q1p
3
1 + 5.168× 10−3p4

1

f6 = 1.200× 10−4q6
1 − 1.026× 10−3q5

1p1 + 1.390× 10−3q4
1p

2
1 − 6.657× 10−4q3

1p
3
1

−8.008× 10−5q2
1p

4
1 + 1.748× 10−4q1p

5
1 − 4.963× 10−5p6

1.

(26)

The polynomialsf3 andf5 are zero. We factorize the above map in terms of solvable maps as
given in equation (16). The results obtained by numerically integrating the map equation (24)
using the solvable map method are shown in figure 3. A variety of initial conditions have been
used and the results obtained agree very well with the exact results. In this case, the generating
function method also gives excellent results.

3.2. Two degrees of freedom

In the two degrees of freedom case, a general Hamiltonian can be written in the form

H(z) = H2(z) +H3(z) +H4(z) + · · · (27)

whereHm(z) contains all terms of the formqa1p
b
1q

c
2p

d
2 with a+b+c+d = m. The total number

of such terms inHm(z) is 3+mCm [14]. That is, we need this many independent coefficients to
parametrizeHm(z). Therefore, to parametrize the nonlinear partH3(z) +H4(z) (truncated at
the fourth order), we require 55 independent coefficients. Consequently, the nonlinear part of
the corresponding fourth-order symplectic mapM4 is also parametrized by 55 coefficients.
These coefficients reduce to fixed real numbers once the Hamiltonian is fixed.

Let us now consider the Lie representation of a general fourth-order symplectic map in
two degrees of freedom:

M4 = M̂ exp(: f3 :) exp(: f4 :) (28)
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wherefm is amth-order homogeneous polynomial inz. As seen above,f3 andf4 can be
parametrized by 55 coefficients. We denote them bya1 througha55. The representation in
terms of solvable maps is given by

M4 = M̂ exp(: g1 :) . . .exp(: g11 :) (29)

where theg are as follows:

g1 = b21q
4
1 + q3

1(b1 + b23q2) + q2
1(b3q2 + b28q

2
2) + q1(b8q

2
2 + b37q

3
2)

+p1(b14q
2
2 + b47q

3
2) + q1p1(b6q2 + b34q

2
2)

g2 = b41p
4
1 + p3

1(b11 + b43p2) + p2
1(b13p2 + b46p

2
2) + p1(b16p

2
2 + b50p

3
2)

+q1(b10p
2
2 + b40p

3
2) + q1p1(b7p2 + b36p

2
2)

g3 = b51q
4
2 + b17q

3
2 + b44p

2
1q

2
2 + q2(b12p

2
1 + b42p

3
1) + q2p2(b15p1 + b45p

2
1)

g4 = b55p
4
2 + b20p

3
2 + b30q

2
1p

2
2 + p2(b4q

2
1 + b24q

3
1) + q2p2(b6q1 + b29q

2
1)

g5 = q2
1p1(b2 + b26q2 + b27p2)

g6 = q1p
2
1(b5 + b32q2 + b33p2)

g7 = q2
2p2(b18 + b38q1 + b48p1)

g8 = q2p
2
2(b19 + b39q2 + b49p2)

g9 = b22q
3
1p1 + b52q

3
2p2

g10 = b31q1p
3
1 + b54q2p

3
2

g11 = b25q
2
1p

2
1 + b35q1p1q2p2 + b53q

2
2p

2
2.

(30)

Thus an arbitrary fourth-order symplectic map can be represented using a product of 12
solvable maps (including the linear map̂M). The coefficientsb1 throughb55 that occur in the
above equation are obtained by comparing the original symplectic map with the refactorized
symplectic map term by term using the Campbell–Baker–Hausdorff series (cf equation (4)).
The expressions for the coefficients obtained by this procedure are given in appendix B. These
55 coefficients parametrize the solvable map representation just as the coefficientsa1 through
a55 parametrize the original symplectic map. The coefficientsbi reduce to real numbers once
the symplectic map is fixed. The solvable map factorization given above is not unique even
after imposing the requirement that the number of solvable maps be a minimum. A numerical
study of the various systems studied here using different possible factorizations indicates that
all of them give very similar results.

We now illustrate the method using the following map for which exact results are known:

M = M̂ exp[: (q1 + p1 + q2 + p2)
3 :] (31)

where

M =


cosθ sinθ 0 0
− sinθ cosθ 0 0

0 0 cosθ sinθ
0 0 − sinθ cosθ

 (32)

andθ = π
3 . Again, as in the previous examples, excellent agreement between solvable map

results and the exact results are observed.
We have also applied the method to more complicated Hamiltonian systems like particle

storage rings. We studied a static storage ring that is designed to store protons. The storage
ring is composed entirely of dipoles, quadrupoles and drifts with the exception of two pairs of
sextupoles. It is for such complicated Hamiltonian systems that the efficacy of our method is
best revealed. Since there are many constituent elements (in storage rings like the Large Hadron
Collider, there can be thousands of elements), numerical integration using Hamiltonians for
each element is cumbersome and slow. On the other hand, a map-based approach where
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one represents the entire storage ring in terms of a single map is much faster [22]. When
this is combined with our solvable map refactorization, one obtains a symplectic integration
algorithm which is both fast and accurate. In the solvable map method, whether the system
being studied is the simple map considered above or the complicated storage ring that we will
now consider, the number of solvable maps required is at most 12 (it can be less if some of
thegi are zero). But in conventional integration methods, the running time for the algorithm
increases with the increase in the number of constituent units of the system. Therefore, for
such complex real-life systems, the solvable map method is much faster.

We studied a static storage ring represented by the following symplectic map:

M4 = M̂ exp(: f3 :) exp(: f4 :) (33)

where [21]

M̂ =


0.371731 4.86128 0.0 0.0
−0.307966 −1.33728 0.0 0.0

0.0 0.0 0.548139 2.60973
0.0 0.0 −0.110952 1.29610

 (34)

and

f3 = −0.517141q3
1 − 4.87906q2

1p1− 14.3568q1p
2
1 − 0.574807q1q

2
2

+2.15359q1q2p2 − 0.233856q1p
2
2 − 10.0954p3

1 − 4.86770p1q
2
2

+25.1785p1q2p2 − 24.9554p1p
2
2 (35)

f4 = −1.12262q4
1 − 18.5081q3

1p1− 116.575q2
1p

2
1 + 0.365400q2

1q
2
2

+2.98491q2
1q2p2 − 33.8546q2

1p
2
2 − 305.622q1p

3
1 − 1.43029q1p1q

2
2

+32.7886q1p1q2p2 − 232.418q1p1p
2
2 − 337.958p4

1 − 10.9181q2
2p

2
1

+31.3454q2p
2
1p2 − 320.703p2

1p
2
2 − 0.710814q4

2 + 13.6088q3
2p2

−87.0309q2
2p

2
2 + 229.570q2p

3
2 − 247.209p4

2. (36)

The factorization of the above map in terms of the 11 solvable maps given in equation (30)
is as follows:

g1 = −4.9074q4
1 − 0.5171q3

1 + 0.2010q2
1q

2
2 − 0.5748q1q

2
2

−4.8677p1q
2
2 + 39.023q1p1q

2
2

g2 = −120.5502p4
1 − 10.0954p3

1 − 769.9028p2
1p

2
2 − 24.9554p1p

2
2

−0.2339q1p
2
2 − 173.6485q1p1p

2
2

g3 = −0.7108q4
2 + 137.8813p2

1q
2
2 + q2p2(25.1785p1− 424.9587p2

1)

g4 = −247.2091p4
2 − 54.2869q2

1p
2
2 + 27.5011q2p2q

2
1

g5 = −4.8791q2
1p1

g6 = −14.3568q1p
2
1

g9 = −40.7815q3
1p1 + 15.6037q3

2p2

g10 = −157.8536q1p
3
1 + 205.6419q2p

3
2

g11 = −245.1402q2
1p

2
1 − 90.106q1p1q2p2 − 66.5219q2

2p
2
2.

The polynomialsg7 andg8 are zero. Theq1–p1 phase plots for the system using our solvable
map method are given in figure 4. From theoretical considerations, we would expect the phase
space curves to approach a triangular shape due to the one-third resonance caused by the
presence of sextupoles. Our numerical results using solvable maps (figure 4) agrees with the
theoretical analysis.
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Figure 4. This figure shows the phase space plot for a storage ring using the solvable map method.

3.3. Error analysis

In our method, we first truncate the symplectic map to a given order and then refactorize it
using a product of solvable maps. Both these stages give rise to errors. When we truncate the
symplectic mapM at thenth order, we obtain

Mn = M̂ exp(: f3 :) exp(: f4 :) . . .exp(: fn :). (37)

The leading term that has been omitted is exp(: fn+1 :). From properties of Lie transformations
and Lie operators [19], we have

exp(: fn+1 :)z = z + [fn + 1, z] + · · · (38)

where [, ] denotes the usual Poisson bracket. Now, [fn + 1, z] gives terms of the formzn [19].
Thus, error due to truncation of the symplectic map is of orderzn.

Next, we refactorize the truncated symplectic mapMn as a product ofk solvable maps:

Mn = M̂ exp(: g1 :) exp(: g2 :) . . .exp(: gk :). (39)

These solvable maps are obtained by first using the CBH series to combine the Lie
transformations and then comparing with the original symplectic map. Both these maps are
made to agree up to ordern. Therefore, the leading error term is again of the form exp(: hn+1 :)
giving rise to an error of orderzn.

4. Conclusions

We have studied a symplectic integration algorithm using solvable maps. It was shown to
give good results in various examples. It provides a fast and accurate symplectic integration
method for complicated Hamiltonian systems. Another advantage of this method is that it can
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be easily extended to higher dimensions since the computations involved are not that difficult
when packages like Mathematica or Maple are used. The solvable map factorization for three
degrees of freedom has already been carried out and involves 20 solvable maps.
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Appendix A

The expressions forb that occur in (18) are given as follows:

bi = ai for i = 1, . . . ,5 and i = 9

b6 = a6− 3a1a3

b7 = a7− 9a1a4

2
− 3

a2a3

2
b8 = a8− 3a2a4

b10 = a10 + 3a2
1a3

b11 = a11 + 9a2
1a4 + 2a1a2a3

b12 = a12− 10a1a
2
3 + a2

2a3 + 12a1a2a4

b13 = a13− 2a2a
2
3 + 5a2

2a4 − 24a1a3a4

b14 = a14− 18a1a
2
4 − 4a2a3a4

b15 = a15− 6a2a
2
4

b16 = a16− 27a3
1a4

4
+ 6a1a3a5 +

9a2
1a2a3

4

b17 = a17− 4a5a7 +
45a2

1a
2
3

2
+ 36a1a4a5− a1a

2
2a3

2
+ 12a2a3a5− 27a2

1a2a4

2

b18 = a18− 6a8a5− 2a6a7− a
3
2a3

4
+

3a1a2a
2
3

2
+ 18a1a4a6− 57a1a

2
2a4

4
+6a2a3a6 + 36a2a4a5 + 54a2

1a3a4

b19 = a19− 4a8a6− 8a9a5− 15a1a
3
3 + 81a2

1a
2
4 + 3a2

2a
2
3 − 5a3

2a4 + 24a2a4a6

+18a1a2a3a4

b20 = a20− 2a8a7− 6a9a6− 3a2a
3
3

4
+ 54a1a2a

2
4 −

171a1a
2
3a4

4
+ 12a2a4a7 +

3a2
2a3a4

2

b21 = a21− 4a9a7 +
45a2

2a
2
4

2
− 81a1a3a

2
4

2
− 3a2a

2
3a4

2

b22 = a22− 81a1a
3
4

4
− 6a9a2a4 +

27a2a3a
2
4

4
.

Appendix B

The expressions forb that occur in (29) are given as follows:

bi = ai for i = 1, . . .20
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b21 = −3a1a2

2
− a3a4

2
+ a21

b22 = −3a1a5− a4a6

2
− a3a7

2
+ a22

b23 = −(a2a3)− a4a8− a3a9

2
+ a23

b24 = −(a2a4)− 3a1a7

2
− a3a10 + a24

b25 = −3a2a5

2
− a6a7

2
− 9a1a11

2
− a4a12

2
− a3a13

2
+ a25

b26 = −2a3a5 +
a2a6

2
− a7a8− a6a9

2
− 3a1a12− a4a14− a3a15

2
+ a26

b27 = −2a4a5 +
a2a7

2
+
a7a9

2
− a6a10− 3a1a13− a4a15

2
− a3a16 + a27

b28 = −(a2a8)

2
− a8a9− 3a4a17

2
− a3a18

2
+ a28

b29 = a4a6− a3a7− a2a9

2
− 2a8a10− 3a1a15

2
+ a4a18− a3a19 + a29

b30 = a4a7− a2a10

2
+ a9a10− 3a1a16

2
+
a4a19

2
− 3a3a20

2
+ a30

b31 = 3a2a11 +
a7a12

2
− a6a13

2
+ a31

b32 = −(a5a6)

2
− 3a3a11 + 2a2a12− a9a12

2
− a8a13− a7a14− a6a15

2
+ a32

b33 = −(a5a7)

2
+ 3a4a11 + a10a12 + 2a2a13 +

a9a13

2
+
a7a15

2
− a6a16 + a33

b34 = −(a5a8)− 2a3a12 + a2a14− a9a14− a8a15 +
3a7a17

2
− a6a18

2
+ a34

b35 = −(a5a9) + 2a4a12− 2a3a13− 2a10a14 + a2a15− 2a8a16 + a7a18− a6a19 + a35

b36 = −(a5a10) + 2a4a13 + a10a15 + a2a16 + a9a16 +
a7a19

2
− 3a6a20

2
+ a36

b37 = −3a9a17

2
− a8a18 + a37

b38 = −(a7a8)

2
+
a6a9

2
+ a4a14− a3a15 + 3a10a17 +

a9a18

2
− 2a8a19 + a38

b39 = a7a9

2
+
a6a10

2
+ a4a15− a3a16 + 2a10a18− a9a19

2
− 3a8a20 + a39

b40 = a4a16 + a10a19 + a40

b41 = 3a5a11

2
+
a12a13

2
+ a41

b42 = −3a6a11

2
+ a5a12− a13a14 + a42

b43 = a5a13 +
a13a15

2
+ a12a16 + a43

b44 = −3a8a11

2
− a6a12 +

a5a14

2
− a14a15 +

3a13a17

2
− a12a18

2
+ a44

b45 = 3a9a11

2
− a7a12− a6a13 +

a5a15

2
− 2a14a16 + a13a18− a12a19 + a45
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b46 = a5a16

2
+ a15a16 +

a13a19

2
− 3a12a20

2
+ a46

b47 = −(a8a12)− a14a18 + a47

b48 = a9a12− a8a13 +
a7a14

2
− a6a15

2
+ 3a16a17 +

a15a18

2
− 2a14a19 + a48

b49 = −(a10a12) + a9a13− a7a15

2
− a6a16

2
+ 2a16a18− a15a19

2
− 3a14a20 + a49

b50 = a16a19− 3a15a20

2
+ a50

b51 = −3a17a18

2
+ a51

b52 = a9a14

2
− a8a15

2
− 3a17a19 + a52

b53 = a10a14

2
+
a9a15

2
− a8a16

2
− 3a18a19

2
− 9a17a20

2
+ a53

b54 = −(a10a15)

2
+
a9a16

2
+ 3a18a20 + a54

b55 = 3a19a20

2
+ a55.
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